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This paper is concerned with the nonlinear stability of the flow between two long 
eccentric rotating cylinders. The problem, which is of interest in lubrication 
technology, is an extension both of the authors' earlier work on the linear eccentric 
case and of still earlier work by Davey and others on the nonlinear concentric 
analysis of Taylor-vortex development. There are four parameters which are 
assumed small in the analysis; they are the mean clearance ratio, the eccentricity, 
the amount by which the Taylor number exceeds its critical value; and the 
Taylor-vortex amplitude. Following the earlier work mentioned above, relation- 
ships are specified between these parameters in order to develop a satisfactory 
perturbation scheme. Thus a non-local solution is obtained to the nonlinear 
stability problem, in which the whole flow field is taken into account. 

Of some importance in the analysis is the fact that it is necessary to allow for 
the development of a pressure field substantially bigger than that associated 
with Taylor vortices in the concentric case, owing to the Reynolds lubrication 
effect in a viscous fluid moving through a converging passage. I n  order to achieve 
this mathematically, it is necessary to solve the continuity equation to a higher 
order than is necessary for the momentum equations. 

It is found that the angular position for maximum vortex activity, which is 
90" downstream of the maximum gap in the linear case, can taken on any value 
between 0 and go", depending on the value of the supercritical Taylor number. 
For a particular experiment of Vohr (1968) acceptable agreement is obtained 
for this angle (50"), though the 'small' parameters are somewhat outside the 
expected range of perturbation theory. Formulae are obtained for the torque 
and forces acting on the inner cylinder. 

1. Introduction 
In  two recent papers (DiPrima & Stuart 1972a, b, hereafter designated as 

I and 11), we have calculated (I) the laminar flow between two long eccentric 
rotating circular cylinders and (11) the linear stability of the flow against 
infinitesimal perturbations of Taylor-vortex type. I n  order to achieve a 
satisfactory solution of the stability problem, taking properly into account the 
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azimuthal dependence of the basic flow, we devised a perturbation scheme in the 
eccentricity which allowed for this azimuthal dependence even in the first term 
of the perturbation series. The method allowed for the fact that  the stability 
depends not only on the local flow a t  a given azimuthal position, but on the whole 
flow field; the problem is thus non-local. One dramatic prediction in I1 is that the 
position of maximum Taylor-vortex activity is not a t  the position of widest gap, 
where the flow is locally most unstable, but is shifted substantially downstream. 
This result, which arises from the azimuthal dependence of the basic flow and 
consequent non-local character of the stability problem, is given some support 
by observations of Vohr (1967, 1968). 

The analysis of I1 was based on the linear stability equations. Here we consider 
the problem of calculating the Taylor-vortex flow from the nonlinear equations, 
with three objectives in mind. First, we need to modify the mathematical per- 
turbation scheme to account for the effect on the Taylor-vortex flow of the non- 
linearity simultaneously with the non-local flow property. Second, we need to 
ascertain to what extent the prediction of the linear theory, that the position of 
maximum Taylor-vortex activity is shifted substantially by non-local effects, 
is modified by the nonlinearity. Third, and of some importance, we need to 
calculate the magnitudes of the additional torque and load on the inner cylinder, 
arising from the presence of the Taylor vortices. 

We shall see later that, in order to devise a suitable perturbation scheme, we 
require an understanding of the lubrication processes by which a large pressure 
can be developed when fluid flows, or is dragged by boundary movement, from a 
wider to a narrower part of the channel. This was demonstrated by Reynolds. 
(1886) and is an intrinsic feature of calculations such as that described in I. 
I n  the present situation, we anticipate from earlier papers on the concentric 
problem (Stuart 1958; Davey 1962; Reynolds & Potter 1966; Kirchgiissner & 
Sorger 1969) that an additional component of ‘mean’ flow is developed by the 
Reynolds stresses of the Taylor vortices, where ‘mean’ is used in the sense of an 
average along the axis of the cylinders. Since, in the case of eccentric cylinders, 
the gap between them varies around the annulus, we have the likelihood that an 
additional large pressure will be developed by the Reynolds lubrication effect, 
in association with the modified mean flow due to the Taylor vortices. This effect 
must be allowed for in the perturbation expansion of the pressure in the nonlinear 
calculation. 

We now proceed as follows. The basic nonlinear equations are given in $2, 
essentially following 11, but with a few differences in notation. Then the per- 
turbation expansion (in terms of the eccentricity E and the curvature parameter &), 
is proposed and explained in $ 3, especially with reference to the ‘lubrication’ 
effect, and is followed by application to the nonlinear equations. The resulting 
sets of equations, ordered in €6,  are solved sequentially in $4. A nonlinear 
generalization of the linear amplitude equation of I1 is deduced by a method 
rather like that of multiple scales. A discussion of the flow and pressure fields, 
including the differences from the linear theory of 11, is given in $ 5. The torque 
and load on the inner cylinder are calculated in $6,  and a general discussion 
follows in $ 7. 
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FIGURE 1. Geometry and co-ordinate systems. 

A preliminary and summarized account of this work was given a t  the Lubrica- 
tion Symposium organized by the A.S.M.E. a t  Northwestern University in June 
1973 (DiPrima & Stuart 1974). 

2. The basic equations 
Following I1 we consider two cylinders of radii a and b and linear speeds q1 

and q2 measured anticlockwise. The centres of the cylinders are set a distance ae 
apart, where 

e = e S ,  S = ( b - a ) / a ,  O < e < I .  (2.1) 

Here e is the eccentricity and 6 is the mean clearance ratio. Instead of ( r ,  0) polar 
co-ordinates, we use Wood’s (1957) modified bipolar co-ordinates (p ,  $) (see 
equation (2.3) of 11), where the curves p = constant are circles, the inner and 
outer cylinders being given by p = 1 and p = ,8. Moreover, the orthogonal curves 
$ = constant are such that $ = 0 coincides with 0 = 0 (figure I ) .  The parameter 
/3 is defined by equations (2.4) and (2.5) of 11. The basic laminar flow is given in 
I for arbitrary e (0 6 6 < 1 )  in the form of a power-series expansion for small 
values of a = p - 1 = S( 1 - e2)i [ 1 + O(S)] and of the modified Reynolds number 
R, = (qla/v)  a2, where v is the kinematic viscosity. 

The linear stability problem in 11 is solved for both a and e tending to zero, 
but with the Taylor number T, defined in (2.3), held fixed or allowed to vary only 
in a limited range and with the constraint 
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where k is a parameter held fixed as E --f 0. For a given experiment, a, E and c are 
known, and k takes on the value which satisfies (2 .2 ) .  The following definitions are 
relevant: 

} ( 2 . 3 )  
c = 2(q1 - 92)/(41+ q2)) R, = & ( I +  q2/q1)Rm = &kl + q2) aa2/v ,  

T = (qla/v)2a3(1 -q$/q t )  = 2cR;/a. 

The Taylor number takes on a conventional definition for the concentric problem, 
for which E = 0 and, therefore, a = 6. The last of (2 .3 )  is especially notable, since 
it implies that R, N a4 N E as E + 0 with the Taylor number T held fixed. The 
reasons for considering 6 and, therefore, a to be small are twofold: on the one 
hand, several experiments have been done with 6 of order 0.1 or even as small as 
0.01 ; on the other hand, small values of 6 are of prime importance in lubrication 
technology, which is one of our concerns. The relation (2 .2)  follows from the 
desire to make the terms R,a/a$ and E cos r$ remain in balance. (This is true for 
the actual perturbation equations, but can be seen more clearly in the model 
equation ( 3 . 1 ) . )  Although this is the method we follow in this paper, because of 
its mathematical interest and experimental relevance, there are other possible 
lines of attack: if e were small, but 6 were not, a straightforward expansion in 
E could be used; if 6 were small, but E were not, a variation on the WKB method 
would be appropriate; in the general case, a Galerkin or other numerical 
approach could be employed. 

It is proposed in the present paper to solve the nonlinear problem, subject to 
(2 .2 )  and to the constraint on T mentioned above, in terms of a series involving 
Some power of B. To this end we shall need to  know the basic laminar flow as a 
power series in E .  FromIand I1 we have the following approximationsfor the (p, q5) 
components of velocity, which are valid as E + 0 with T fixed by the requirement 

where U = 2(x2 - 4) (x - t c )  sin c$ + O(E) ,  12.5) 

(2 .6 )  

(2 .7 )  

(2 .8)  

V = V, (X)  + eV,(x, 4) + e2[&,(x) + kT*G1(x, 4) + k2c2I&(x)] + O(e3), 

i V, = 1 - cx, 

V 2 1  - - (x2  - t )  [&(I - &c2) (A - x2) -gcx(& - x2)] sin c$, 
F- - x2-1 

V, = 6(x2  - 4) cos q5, V,, = 3(x2  - t),  

22 - 4 
and /I--I = a(x+*). 

Knowledge of the concentric nonlinear problem (Stuart 1958; Davey 1962; 
11) then suggests that the perturbed velocity and pressure fields can be written as 

up(x, 4) 5, 7) = &ae(q,+ ! l 2 )  U(X,  $1 + (.I..) u(x, $4 ‘57)) 
u& $4 5 9 7 )  = & k 1 +  q2) V ( X ,  $1 + (q1- q 2 )  4x3 f ,  7), 
u& 6 0 7) = ( v / a a )  w(x, 4 , f ,  71, 
P ’ b ,  4, f ,  7) = (v41/aa2) m, $) + ( v2 /a2a2)P(x ,  54 f ,  7), 

(2 .9 )  
(2 .10)  

(2 .11)  

(2 .12)  

where aa< is the axial co-ordinate, u5 is the axial velocity, 7 = vt/a2a2 is the non- 
dimensional form of the time t and p‘ is the kinematic pressure. The above 
scalings reflect the well-known fact that, in the concentric problem, the radial 
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and axial perturbation velocity components are smaller than the azimuthal com- 
ponent by a Reynolds number factor (Stuart 1958). With regard to the pressure 
scaling, however, a cautious attitude is necessary, since we have not allowed for a 
large pressure development due to Reynolds' lubrication effect. We return to  
this point in 8 3. 

Later the flow will be assumed to be steady, since our main mathematical 
concern is to calculate the steady Taylor vortex. However, it may be helpful for 
future work to retain a/& in the general formulation. Apart from the replacing 
of t by 7, and the exchange of p and p',  the above formulae are identical with 
equations (3.5)-(3.8) of 11. 

The equations of motion and the continuity equation in the modified bipolar 
co-ordinate system are 

au au i a 

a ~ a v  a ~ a v  
+cRup(a- ap (-) p2 --- a$ a$ (-) p2 -1 ax 9 

(2.13) 

i a  

+- p a y  -a- a ( J ) ~ u  - -+- a r ) a U l  - - 
CR, ap p2 a# a$ p2 ax 3 

aT ax P a$ [ ax p 

(2.14) 

a$ a t  
a aw i aw J* 
- + €J* R, U - + - J* RuV - + J* u - + - cR, v - + w - 

= -ap/at+ ( ~ ~ 2 + a / a p ) ~ ,  (2.15) 

(2.16) 

where J is the Jacobian of the conformal transformation defined in I and I1 

(2.17) 

(2.18) 

6% and 
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In  view of the complex nature of the perturbation equations (2.13)-(2.16), 
it is impossible in a reasonable amount of space to give all the details which may 
be of interest. There are, however, certain important features to which we would 
like to draw attention: (i) as can be seen from the series expansions of the basic 
flow (2.5)-(2.7) and ofthe Jacobian (3.9), termsproportional to ecos # and &,sin q5 
appear in (2.13)-(2.16); (ii) when i t  occurs, the derivative a/a#, which represents 
convective effects, is usually multiplied by the parameter R,, which is O(e)  accord- 
ing to ( 2 . 2 )  and (2.3). 

3. The perturbation expansion 
I n  I1 it was thought to be helpful to explain the method to be used by reference 

to  a simpler model equation, before proceeding to the application of the method to 
the true (and involved) equations of the stability problem. A similar procedure 
may be helpful here, in explaining the method t o  be used to solve the nonlinear 
equations (2.13)-(2.16). For purposes of explanation only, therefore, let us 
consider the steady equation 

where V2 = a,/ax, + a 2 p . p .  (3.2) 

The essential differences between this equation and equation (4.1) of I1 lie in 
the inclusion of a right-hand side which is quadratic in v, and in the replacement 

According to (2.2) and (2.3) we have R, = (Ta/2c)h = Tike. Thus the co- 
efficients in (3. I )  are functions of e and T ,  with k fixed. In  I1 the linear form of 
(3.1) is solved by an expansion in e of the following form: 

of - h2v by a2vl8C2. 

2) = A[v(O)(x, #) + € V ( l ) ( X ,  #) + O(e2)] cos A t ,  (3.3) 

T = T,+CT,+C~T~+...., (3.4) 

where v(0) and v(l) are functions to be determined, To, Tl and T, are numbers to 
be determined by integrability conditions, and A is an arbitrary amplitude of the 
linear eigensolution. We note, however, a difference between the role of TI here 
and in the linear problem of 11. In  the latter case TI is zero for a neutral perturba- 
tion; this corresponds to the Taylor number taking on its critical value, as a 
function of e. In the nonlinear case, on the other hand, we shall find that T1 can 
be chosen to specify the amount, of order 6 ,  by which the Taylor number exceeds 
its critical value. 

In  solving the nonlinear problem (3.1) with (3.2), it is necessary to determine A 
and to allow for the generation of harmonic and mean (in c )  effects by the non- 
linear term. Because of the quadratic character of the nonlinear term, it is clear 
that, if the fundamental (cos A [ )  has small magnitude A,  the mean and first 
harmonic (cos2hC) terms appear with magnitude A,, and a correction to the 
fundamental and the second harmonic (cos3ht) with magnitude A3. For the 
linear problem, the term do)  of (3.3) is known (11) to be of the form B(#) times a 
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simple eigenfunction, namely that for the concentric case ; the amplitude function 
B($) is determined with dl) a t  order EA. This suggests that, if we wish to allow for 
this correction due to eccentricity simultaneously with the nonlinear effect 
on the fundamental, which is of order A3, we should make the identification 
EA = A3: this yields A = €3. Allowing for this, and for mean and harmonic effects 
(of order A2 = e ) ,  we replace (3.3) by 

(3.5) 2.' = e q v q x ,  $,[) + € W ) ( X ,  $,t) +sw(2)(x, $, t)] + O ( E 2 ) ,  

with (3.4) remaining unchanged. Since the amplitude of the disturbance is now 
proportional to €3, it is necessary to include all powers of €3 in the expansion of the 
velocity and pressure fields, as is well known in nonlinear stability theory (Davey 
1962). On the other hand, odd powers of €4 in the expansion (3.4) for T can be 
shown to be zero, and for convenience have been omitted. 

Our plan now is to apply (2.2), (3.4) and expansions like (3.5) to the true 
equations (2.13)-(2.15) of our problem in the steady case, in order to calculate 
the equilibrium Taylor-vortex flow and associated properties. Thus for the 
velocity field we write 

u = 4 % ( X ,  $> 5) + c w x ,  $, t) + %(X, $,a + € 3 U 3 ( X ,  $ 9  '5) + €"U,(X, $4 0 1  + m3), 
2.' = &Z.'o(x, $ 9  t) + e w x ,  $ 3  5) + E2.'2(X, 4, 0 + €82.'3(", $, 0 + E2vq(X, $ 4 1  + 0(e3), 

w = +,(x, 4, t) + e*wl(x, A t) + e.zu2(x, $, t) + €8u>3(~, $, t) + €2w4(x, +, [)I+ ~ 3 ) .  

(3.6) 

(3.7) 

(3.8). 

The model equation, however, does not give immediate help with the choice 
of the expansion for the pressure field. But we can pinpoint a possibly related 
difficulty, which in itself gives a clue to the choice of pressure expansion, by 
reference to the continuity equation (2.16). Substituting (3.6)-(3.8) in the latter, 
using (2.2), (2.3), (2.8) and (3.4), and making use of an expansion of J ,  namely 

J = 1 - 2e cos $ + c2( 1 + C O S ~  $) + O(e2) ,  (3.9) 
we obtain au,/ax + awo/at = o a t  O ( E ~ ) ,  (3.10) 

au,/ax + alo1/a[ = 0 a t  O(C), (3.11) 

(3.12) 

(3.13) 

These continuity conditions have to be solved in succession, in association 
with corresponding momentum equations. We are particularly interested in 
analysing the conditions that (3.9)-(3.13) impose on the mean flow, which is 
that part independent of t in a Fourier analysis. At O(&) the equations are essen- 
tially those of linear stability theory for concentric rotating cylinders; in their 
solution, however, an amplitude function B($) must be introduced to multiply 
the cos A t  fundamental, as indicated in 11. The O(e)  equations relate to the 
mean field, which is independent of t, and to the first harmonic, which is of the 
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form cos 2h(. Moreover if ul0 denotes the term in u which is independent of (, 
then (3.11) yields auIofax = 0, which, with the no-slip boundary conditions, 
implies that ul0 = 0. Then a t  O(&) we have a correction to the fundamental, 
together with a second-harmonic term, which is proportional to cos 3h(. It is 
at O(e2) that the mean field returns; and we see from (3.13) that, for terms 
independent of f ,  we have 

au,,/ax + ckTtawlo/aq5 = 0, (3.14) 

where wlo denotes the mean part of wl and u30 the mean part of u3. 

be integrated to yield 
On the assumption that wl0 has been calculated at  O(E) ,  equation (3.14) can 

(3.15) 

where the no-slip boundary condition has been applied a t  x = -4. However, 
we have not satisfied the corresponding condition a t  x = +&; furthermore, if 
the assumption that wlo is completely determinate a t  O(e)  is valid, we have no 
chance of satisfying that condition. 

A resolution of this dilemma can be seen from a consideration of lubrication 
theory: it is known from that theory that the requirement of satisfying continuity 
of mass flux in a non-parallel channel (or, in other words, the no-slip boundary 
condition) provides for the development of an additional, and usually strong, 
pressure field. Indeed Reynolds’ (1 886) lubrication equation for the pressure 
can be derived from just that requirement; this is well known, but one reference 
source is I. 

In  the present situation we wish somehow to allow for an arbitrary parameter 
in wl0, dependent on q5, which can be used to satisfy the additonal condition on u30. 
Lubrication theory is, in fact, suggesting to us that an additional pressure should 
be introduced of such scale as to modify the momentum equation at  O(e) and 
thus wlo. Moreover, since the pressure gradient ap/aq5 in (2.14) is multiplied by 
a2R;lc-l = 4 ~ k ~ ~ ~ T - t  = O(s3) ,  as can be seenfrom (2.2) and (2.3), it is clear that 
p has to be large, in fact O(S-~) in our scaling, in order to be effective a t  O(B). 
The arguments suggest that p should be expanded as 

+ 4 P o ( X , q 5 ,  0 + E * P l ( X ,  q5> 5) + EP2@’ $4 f )  + E+P3(X ,  q5, 5) 
+ @p4(x, $, 6 )  + O(E#)]  + constant. (3.16) 

Those terms which are within square brackets and multiplied by €4 form the 
basic x- and (-dependent pressure field brought about by the usual Taylor-vortex 
effect (Davey 1962). On the other hand, the other group of terms, those within 
square brackets and multiplied by eFZ, forms the ‘lubrication’ or Reynolds 
pressure field. It can be shown that this part of the field must be independent of 
x ,  in order for the expansions (3.6)-(3.8) and (3.16) to be consistent with (2.13)- 
(2.16). Moreover, we note that the lack of dependence of the pressure on x is 
consistent with Reynolds’ lubrication theory. The expansion parameter is E ,  
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and not E), because the arbitrary functions qo($6), q1($6), ..., appear only in the 
mean equations a t  O(s) ,  O(e2) and so on. Although we have chosen to represent 
(3.16) as two series added together, the two parts do interact and can be con- 
ceived as a single Laurent series in e&. A few further remarks about the pressure 
scaling may be in order. The assumed scaling (2.12) represents the effect of the 
Taylor vortices and the generation of a modified mean flow and pressure by the 
associated Reynolds stress. This is an effect present in the concentric problem. 
When the cylinders are placed eccentrically, however, the 'lubrication ' effect 
of the forcing of fluid through a variable passage produces a much larger pressure. 
From (2.12) and (3.16) the kinematic pressure is 

(v2/a2a2) ( T k - ' / 4 ~ k ~ )  = (svg,/aa2) ( I  - q2/ql). 

Except for having a factor 1 - q2/q1 instead of 1 + q2/ql, this is consistent with 
classical lubrication theory. The effect of eccentricity (at first order) in the basic 
flow is to introduce a plane Poiseuille component O(E)  and a pressure O(s/lt2) as 
shown in equation (90) of I. Here, in the perturbation, the nonlinear terms 
produce a mean flow O(E), including a plane Poiseuille term, together with a 
lubrication pressure also 0(e / l t2 )  = O(e/a2),  which is the O ( T * r 2 )  term of (3.16). 
We shall see later that, as the limit of the concentric case is approached, this 
lubrication pressure field disappears. 

We are in a position now to write down the sets of steady equations that we 
wish to solve at  successive orders. These equations are derivable from (2.13)- 
(2.16), and withuse of (2.2), (2.3), (2.5)-(2.8), (3.4), (3.6)-(3.9) and (3.16) together 
with 

M = a2/ax2 + a2/ap, (3.17) 

- T, v, vo = - apo/ax + MU,, (3.18) 

-uO = MU,, (3.19) 

(3.20) 

yield the following : 

o = - ap,/ag + MW, 
together with (3.10) a t  O(e4); 

au au aP1 

O ax O a( ax 
-T,&u,+U J+w "-&T,v~ = --+MU,, (3.21) 

together with (3.11) a t  Ofs); 

(3.23) 

a2u, 

ax ax ax2 
= -- ap2+J aP cos $5 + Mu,  - 2 - cos $6, (3.24) 
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together with (3.12) at O(E$).  
This is the order to which we shall take the calculations in the present paper. 

However, we shall need to consider in addition the mean continuity equation 
a t  O(s2),  as given by (3.14) and its solution (3.15). The pressure gradient qo($), 
which contributes a ‘plane Poiseuille’ or ‘lubrication’ effect in the O ( E )  azi- 
muthal momentum equation (3.22), can be determined by satisfaction of the 
outstanding boundary condition on u30 in (3.15). 

4. Solution of the equations 
Order €4 

Following I1 ( § 5 ) ,  we find that the system of equations (3.18)-(3.20) and (3.10), 
subject to uo = vo = wo = 0 a t  x = & 4, determines an eigenvalue problem for 
To. The solution is 

} (4.1) 
uo = - B($)fo(x) cos vo = B($) 9 d X )  cos %, 

wo = A-l B($) Df,sin A t ,  po = - h-,B($) (D2 - h2) Dfo cos hc, 

where h denotes the axial wavenumber, D denotes dldx, B($) is an amplitude 
function to be determined (as in 11), and fo and go are defined by equations (5.4)- 
(5.6) of I1 with a = 0. This is the concentric stability problem, with a critical 
Taylor number of To = 1695 at h = 3.127; these are the eigenvalues we shall use 
in this paper. 

Order E 

From (4.1) the nonlinear terms of (3.21)-(3.23) can be calculated, and yield both 
mean and first-harmonic contributions. The solution of these equations, together 
with (3.11), has the form 

} (4.2) 
u1 = -B2($75)f1,(4 cos 2L5 211 = V l O ( X ,  $) + B2($) g1,W cos 2ht, 

w1 = (24-1B2($) Df12 (4 sin 2G,  P ,  = P l O ( X ,  $1 +BY$) 4 , ( x )  cos 2%. 

In these formulae f,, and g,, are given by the non-homogeneous ordinary dif- 
ferential system 

(4.3) 

(4.4) 

(4.5) 

f12-Mzg12 = B(f0~90-90Df0)~ 

MVi2 + 4h2 ToGgiz = -foD3fo + (Dfo) D2fO-ch2TOg;, 
f12 = Df12= gl, = 0,  x = + - 1 2 ,  

where 

The harmonic pressure function Z12(x)  is given by 

AIn = D2 - n2h2. 

4, = ( 2 V 2  [-M2Df12+ (Dfo)2-foD2f01. 
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We turn now to the calculation of the mean field, that is wl0(x, $), qo($) and 
pl0(x ,  $). From (3.22) we obtain 

- P2($) R f o g o )  = - qo(4)  +D2v,o. (4.6) 
This ordinary differential equation can easily be integrated for wl0, subject to 
wl0 = 0 at x = k 4, since B($) and qo(q5) are independent of x. Substituting wl0 
then in equation (3.15) for u30, and satisfying the boundary condition u30 = 0 
at x = t ,  we obtain an expression for qo($),  namely 

ao($)  = - 6B2($) Qo + g o ,  (4.7) 
where go is a constant still to be determined and Qo is a constant defined by 

* 
FO(4 = I ~ ~ 9 0 d x - ( x + ~ ) S - ~ 9 0 ~ l  (4.8) 

and QO = I-, d ~ .  (4.9) 

0 = jZnPo($ )d$  0 = /Zv(go-6~2($ )Qo)d$ .  0 (4.10) 

* 
The constant go is now chosen to satisfy the requirement that the pressure 
(3.16) must be periodic in $ with period 2n-, so that 

This constraint becomes useful once we have obtained an equation for B($), 
which we find a t  O(&). 

From (4.6) and (4.7) we now have 

WlO(Z, $) = B2($) SlO(4 + &o(x2- B 7  (4.1 1 a )  
where 910 - &Fo(X) - 3&o(X2 - t).  (4.11 b )  

Thus v,,(x, $1 = - W 2  ($1 F0(4 + [:go - 3QoB2($)l (x2  - t). (4.12) 

Moreover (3.21) yields 
P l O ( X 9  $1 = B2($) 4 0 ( 4  + ~ O ~ l O O ( 4 ~  (4.13) 

where z,, = SI; [~,y~(x) g,, - j o ~ j o  + ~ c ~ , g ~ ]  dx + constant (4.14) 

z,,, = 2 ~,(x) ( 2 2 -  +) dx + constant. (4.15) and 

It is of interest to note that the term F0(x) in (4.12) represents the contribution 
to vlo from the Reynolds stress of the Taylor vortex, while the term proportional 
to x2 - t is the plane-Poiseuille-flow contribution, arising from the Reynolds 
or lubrication effect. 

Order €3 

From (4.1), (4.2) and (4.11) we can calculate the nonlinear terms which arise 
in (3.24)-(3.26). It is clear, from the form of the interactions between O(e4) and 
O(s)  terms, that the nonlinearities will generate both the fundamental wave- 
number h and the second harmonic 3h. Thus it is convenient to separate these 
different harmonics by writing 

1-4 

u, = - u21(x, $) cos A t  - u,&, 4) cos 3h!q  

w2 = v,,(x, #) cos A,&- + w23(x, q5) cos 3h5, I (4.16) 

with similar expressions for w 2  and p, .  
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For the fundamental component, (3.25) then yields 

-M1v21+u21 = lB($) 'OS $1 G1ll(x) + IcTk(dB/d$) -tB3($) G;14(x) 

+ flOB($) xfo(4. (4.17) 

Moreover, by eliminating p ,  between (3.24) and (3.26) and by using (3.12), we 
have 

M2,%1+ h2T0V,v,1 = [B($) cos $1 Flll(4 + kTS(dB/d$) F 1 1 2 ( 4  

+B3($) % 4 ( 4  + TB($) li113(x) - Qflo~2cTogo(x) (x2 - 4) W$). (4.18) 
We note that dB/d$ appears in (4.17) and (4.18), where the unprimed F and G 
functions are given by equations (5.14)-(5.18) of 11, but with M there replaced 
by Ml and CT = 0. These functions are linear info and go. The functions Fi14 and 
Gi14 are given by 

= - kfOMZDflZ - $(DfO)MZflZ + +f1ZMlDfO + B(-?flZ) MlfO 

- ~2c~ogo(glo + B912), (4.19) 

G;14 = f0 Dg10 + &fODglZ + i f 1 2  DgO + g12 Of0 + 49ODfl2* (4.20) 

The boundary conditions on (4.17) and (4.18) are 

uZl = Du,, = wZ1 = 0, x = +$. (4.21) 

The homogeneous problem corresponding to (4.17), (4.18) and (4.21) is the 
eigenvalue problem a t  O(d) ,  whose solution is (4.1). Therefore, in order for the 
differential system (4.17), (4.18) and (4.21) to have a solution it is necessary for 
the following orthogonality condition to  be satisfied: if (f2, go+) is the adjoint 
function pair defined in 11, equations (5.7)-(5.9), then we must multiply the 
right-hand sides of (4.17) and (4.18) by fof and go+ respectively, add and integrate 
Over ( - Q, Q) and require the resulting expression to be zero. Since $ derivatives 
do not occur on the left-hand sides of (4.17) and (4.18), $ is merely a parameter in 
the integration, so that the orthogonality condition yields a differential equation 
for B(q5). This is a nonlinear generalization of the linear amplitude equation 
(5.19) of 11, and can be written as 

kTSdB/d$ = ~ B ( $ ) C O S $ + ( T ~ ~ ~ + ( T ~ ~ ~ ) B ( $ ) -  r iB3($) ,  (4.22) 

(4.23) 
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The amplitude equation, being of Bernoulli type, is easily integrated to yield 

(4.25) 

( w ,  w3,w;, w5) = 2T,-W, r3, Pi, r51. (4.26) 

The integration constant has been chosen so that P($) is periodic with period 2 n  
in $, so as to ensure that the velocity and pressure fields (3.6), (3.7), (3.8), (4.2) 
and (5.5) are single-valued in $. We note for future reference that 

1 
where E($)  exp [: sin $ + (Tl w3 + $1, 

(4.26 a )  

where go has been eliminated by (4.10) and w4 is defined by (4.27) and (4.28). 

using (4.10). This gives 
Having found an expression for B(#) in (4.24), we can now.determine go by 

= r3T1/r& (4.27) 

where r4 = r; - 6 ~ ~ 1 7 , .  

As a consequence of (4.27), the combination Tlw3+ c ~ ~ o w ~ ,  which appears in (4.25), 
can be written as 

where 
(4.28) 

With these relations (4.25) becomes 

E($) = exp [(w/k)sin$ + (T1w3w;/kw4) $1. (4.29) 

Subject to the determination of the constants Qo, r, Po, r3, r;, r5, r4 and the 
solution of the associated differential systems, we have now obtained the velocity 
field to order E .  This gives the nonlinear extension of the zeroth-order results 
(5.45)-(5.50) of 11, which correspond to O(e4) here. For the pressure we have 
calculated the dominant, O ( E - ~ ) ,  ‘lubrication’ pressure, and have also obtained 
the less-important ‘ Taylor-vortex ’ pressure to O(E) .  

Before going on to discuss the details of the velocity and pressure fields, it  is 
convenient to give the values of constants defined in (4.9) and (4.23). Much of 
the information can be obtained from Davey’s classic (1962) paper, by relating 
the functions occurring here to those occurring there. Other constants have 
been obtained by integration of data supplied by Dr Davey, in the form of un- 
published tables and private notes. The results we have are for the case in which 
the outer cylinder is fixed (q2 = 0, c = 2 ) ,  and are as follows: 

(4.30) 

h = 3.13, To = 1695, Qo = -0.1365, 

r = 23.09, ro = 16-90, r3 = 0.007356, 

r4 = 38.27, r5 = -2.38, r; = 40.22, 

w = 1.122, w4 = 1.859, U; = 1.954, 

w3 = 0.0003573. 
7 

1 
F L I  67 
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The meaning of the prime introduced in several parameters and functions is that 
primed quantities (e.g. I’i) include a contribution due to the plane Poiseuille 
or ‘lubrication’ effect, whereas unprimed quantities do not (e.g. F4). The value 
of I’ quoted in (4.30)is that of 11, where the value of h = 3.127 is slightly different. 
One final point we wish to make is that Tl is a free parameter, whose meaning is 
discussed in the next section. 

5. The flow and pressure fields 
We now have the perturbation velocity field of (3.6), (3.7) and (3.8) to O(e): 

u = - €-a(#) fo(x) cos A& - eB2(#)f1,(x) cos 2h5 + O(&, (5.1) 

+ B2(#) g12(x) cos 2hE] + O(e*), (5.2) 

(5.3) 

= s i iB(#)go(x)  cosh<+e[B2(#)gio(x) + (3Qor3Ti/r4) ( x 2 - $ )  

20 = ~hh-~B(#)Df,(x) sinh.i+e(2h)-lB2(#) Df12(x)sin 2h<+O(d). 

The functions f and g occurring here are related to those of Davey’s (1962) paper 
(7 -+ 1,m = 0) as follows: 

f o ( 4  = %(DL go(4 = Vl(D), f12(x) z5 - W D ) ,  g,,(x) = -z%( ), 

gl,(x) = - &F0(X) - 3Q0(X2- +) = - +Fl(D) - 3Q0(x2 - 41, 
l- } (5.4) 

where a D in parentheses denotes Davey’s functions. These are given with 
derivatives in table B of his paper, and (in more detail) in tables 8, 9, 10 and 11, 
lodged with the Editor of Journal of Fluid Mechanics. The normalization used 
isgo(0) = 1. 

For the pressure perturbation (3.16) we have 

-s‘h-2B(#) (D2-h2) Qfo(x) cosh5+s[B2(#) b ( x )  + (6Q0w3T1/w4)’1~~(x) 

(5.5) +By#) Zl2(%) cos 2h<] +O(e%). 

Although the O ( d )  and O(s) ‘Taylor-vortex ’ contributions are given above, 
because the functions are known from (4.5), (4.14) and (4.15), these terms are 
actually of higher order than the term O(s-1) in (3.16). The next important term 
after the O ( E - ~ )  term is the one O(s-l), involving ql(#), which has not been calcu- 
lated. The O ( c 2 )  pressure perturbation is ‘lubrication’ dominated, and is a func- 
tion of q5 only. 

I n  order to render the formulae (5.1)-(5.3) more informative, it is necessary to 
examine the properties of the function B(#) .  First of all we note that (4.24) 
differs from the form (11, equation (5.21)) given in linearized theory, namely 

B2(#) = B;(4 exp((w/k) (sin 4 - l)), (5.6) 

where Bo(k) is there an arbitrary constant. Moreover (4.24) contains two free 
parameters, k and Tl. The parameter k, which also appears in (5.6), relates to 
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the geometrical constraint (2.2), while Tl defines the amount by which the Taylor 
number exceeds the critical value, which is To when the term O(e2) in (3.4) is 
neglected. 

In our analysis we have let e --f 0 subject to k and Tl being kept as fixed para- 
meters. We are now in a position to consider the possibility of varying either or 
both of k and Tl as a second limit. One of our objects is to know to what extent 
our present nonlinear predictions regarding the function B($) differ from those 
of 11. Now, we expect to retrieve linear theory by allowing the Taylor number to 
approach the critical value, which is To if terms O(e2)  are ignored. Thus the case 
Tl = 0 should give linear theory, and this suggests that we consider a second 
limit TI + 0, with k fixed. 

The limit Tl + 0, kJixed 

By a straightforward expansion of (4.24), together with use of standard Bessel 
integrals, we obtain 

where 

is the modified Bessel function of order zero, and I (x )  is related to the modified 
Struve function Lo(x) (Abramowitz & Stegun 1964, p. 498), and is given by 

I(x) = &Io2= Q exp (xsin $) d$ = nIo(x) - in Lo(x) 

Clearly the dominant term, O(Tl), of (5.7) is of the same form as the linear 
solution (5.6)) but  has the arbitrary constant B$(k) replaced by 

In contrast to the result (5.6) of the linear problem, this formula has a definite 
value for prescribed k and Tl 2 0, corresponding to a definite geometry and 
Taylor number (3.4). 

We can now follow Tl + 0 by a third limit, namely on k. If Tl --f 0 followed by 
k 4 co, then 

Alternatively, if Tl -+ 0 followed by k -+ 0, then 

B$(k,Tl) - A3 ( 2 y ) *  - [l + O ( k ) ] .  
w4 

(5.10) 

(5.11) 

7-2 
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These formulae confirm the remarks made in I1 about the importance of non- 
linearity in determining the form of B,(k), and indicate that the limit T, + O  
corresponds to an approach to the linearized solution near to the critical Taylor 
number, but with a definite amplitude. 

It is also instructive to consider the alternative (second) limit, TI -+ co. As 
we shall see, this places Stuart's (1958) and Davey's (1962) nonlinear solutions 
for the concentric case in the context of the present calculations. 

The limit T, --f 00, kJixed 

By an asymptotic expansion for large T,, we obtain 

The most noticeable feature of this formula is that B(q5) becomes uniform 
in q5 when T, -+ CO. I n  this limit, in which only the leading term of (5.12) is 
retained, the velocity field (5.1)-(5.3) is independent of 4. With use of (4.19), 
(4.20), (4.23), (4.28) and (5.4), it can be seen to be identical with the solutiou of 
Davey (1962). The leading term of (5.12) can also be obtained from the amplitude 
equation (4.22). The balance is between the last two terms, 

(Tl r3 f v O  rt5) B($)  = r; B3(4),  
which are of order T,; the other terms are negligible. Moreover, although the 
eccentricity 8 remains in the perturbation velocity field (3.6)-(3.8) even when 
T, -+ co, it  does so only in the form ST,, which, by (3.4), is T - To to the order of 
our present calculation. The parameter k disappears from (5.12), and therefore 
from the velocity field. Finally, using the leading term of (5.12) for B2(q5), to- 
gether with (4.7) and (4.27), we can see that the lubrication pressure gradient 
qo(q5) is zero in the limit T, -+ co. 

We now summarize our knowledge of the role of the parameter T,, which we 
consider to lie in the range 0 < T, < 03. The lower end of the range yields a 
nonlinear modification to the results of linear theory for the eccentric case, and 
the upper end anapproach to the equilibrium finite amplitude concentric solution. 
In  the latter case, the combination eT, = T - To determines the magnitude of 
the supercritical Taylor number T ,  but subject to  the over-riding first limit s-+ 0. 

The position of r n u ~ ~ r n ~ ~  vortex activity 

Following I1 we consider one possibly relevant measure of the strength of vortex 
activity, which may correspond with observation, to be the radial gradient 
of the axial velocity evaluated a t  the outer cylinder. 

From (5.3) we see that the dominant term, O(E&),  is largest at A t  = an, where 
the second term, O(s) ,  is zero. It seems reasonable, therefore, to confine our 
attention to  the dominant term, so that we need only to consider the azimuthal 
variation of the functions B(q5). (In contrast, I1 takes the linear problem to a 
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higher order, and thus a correction is obtained to the above leading term. This 
would correspond to O ( d )  here, but we have not calculated it.) Moreover in the 
present approximation, where only the leading term is kept, $ is equivalent to the 
actual polar angle on the outer cylinder, as discussed in 11. The outer cylinder 
is, of course, especially relevant in the context of observations made from outside 
the cylinder, in that flow conditions near the outer cylinder are most noticeable. 

Equations (4.24), (4.25) and (4.29) can be used to show that B($) has its 
maximum at a location $sf given by 

Either from this relation, or by differentiation of (5.7) and (5.12), it is possible 
to obtain the value of $M for which B($) is a maximum in the limits Tl -+ 0 and 
TI -+ co respectively. 

For TI --f 0 we obtain 

(5.14) 

(5.15) 

The first of these results corresponds to a perturbation away from linearized 
theory. The second, in which limit we approach the concentric case, gives $M + 0, 
though this has no real significance because the flow becomes axisymmetric. 
Of greater importance is that (5.15) gives a positive value for $M when Tl is large. 
The above results suggest that, as Tl ranges from 0 to 00, the position of maximum 
vortex activity varies from $ = in down to $ = 0. This is confirmed by direct 
numerical calculation of B2($) for a variety of cases. 

It is very interesting to  compare the position of maximum vortex strength 
with the experimental observations of Vohr (1968). For his experiments with 
6 = 0.099 and E = 0.475 we find that k = 0.31. For this value of k the numerical 
variation of $M with Tl is given in table 1.  Vohr has informed us that his observa- 
tion, namely that the maximum vortex strength occurred a t  about 50" down- 
stream of the position of widest gap, was for a speed about 1.1 times the critical 
speed. I n  terms of Taylor numbers this would be about 20% above critical, 
which means that T - To g 0.20 x 1695 = 340. For e = 0.475 this gives Tl z 700. 
From table 1 we find that $M is approximately 47" for TI = 700. Too much signi- 
ficance should not be assigned to this agreement between theory and experiment. 
For 6 = 0.099 and e = 0.475 corrections associated (i) with the next term in the 
velocity field, (ii) with the O(e2) term in the critical Taylor number and (iii) with 
the difference between the bipolar angle r$ and the polar angle 0 measured around 
the outer cylinder should be important. Indeed for 6 = 0.099 and e = 0.475 we 
find from equations (6.18) and (6.21) of I1 that $ = 50" corresponds to 0 = 76". 
Moreover (to quote 11) we note that the observation of about 50" was certainly 
qualitative and subjective, as Dr Vohr has explained to us, and that flow 
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0.6 I I I 

- 

- 

- 

- 

- 

TI 
0 

20 
50 

100 
200 
300 
400 
500 
600 

0.6 

0.5 

0.4 

0.3 

0.2 

QM 

377 

1.55 
1.51 
1.45 
1.33 
1.22 
1.11 
1.01 
0.91 

B2($hd 
0 
0.0 18 
0.044 
0.088 
0.173 
0.255 
0.332 
0.403 
0.467 

Tl 
700 
800 
900 

1000 
1200 
1400 
1600 
1800 
2000 

4M 
0.82 
0.74 
0.66 
0.59 
0.46 
0.36 
0.29 
0.24 
0.20 

TABLE 1. $M and B2($fif) for k = 0.31 and several values of T ,  

B2(4M) 
0.526 
0.580 
0.628 
0.671 
0.745 
0.806 
0.858 
0.904 
0.947 

4 
FIGURE 2. The variation of El2($) with $ for k = 0.31 and T, = 700. 

reattachment, following separation, may have affected the observations. Never- 
theless, it is clear that the present non-local stability analysis is capable of 
explaining a shift downstream in the position of maximum vortex strength 
from that of widest clearance as predicted by a local theory. The variation of 
B2($) with $ for k = 0.31 and Tl = 700 is shown in figure 2 .  An experimental 
determination of the variation with 0 of the strength of the Taylor vortex 
would be helpful. 

We conclude with a remark about the range of validity of the formulae (5.14) 
and (5.15) and the corresponding formulae (5.7) and (5.12) for B2($).  Fork = 0.31 
a numerical calculation shows that the O(T:) term in (5.7) is 17 yo of that O(T,) for 
TI = 100. Thus one might expect (5.7) and (5.14) to be valid for Tl < 100 approxi- 
mately. Similarly for k = 0.31 a numerical calculation shows that the second term 
in (5.12) is 30% of that O(T,) for TI = lo4. This suggests that TI must be greater 
than lo4 for (5.12) and (5.15) to be valid. 
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6. The torque and load 
For laminar flow, in the absence of Taylor vortices, formulae for the torque 

and force on the inner cylinder are well known in the limit CL -+ 0, R,, --f 0 (the 
lubrication approximation). Paper I gives the torque and load expressions by 
series expansion to order CL and RllI for arbitrary e in the range 0 6 t: < I. For the 
Taylor-vortex problem in the concentric case with the outer cylinder a t  rest 
(q2 = 0 ) ,  Stuart (1958)) Davey (1962), Reynolds & Potter (1966) and Kirch- 
gassner S: Sorger (1969) have given expressions for the torque to varying degrees 
of accuracy by amplitude expansions. Here we extend the torque calculation 
to the eccentric case with q2 = 0,  although only to second-order in velocity 
amplitude, and we also evaluate the Taylor-vortex force on the inner cylinder 
due to eccentricity. 

I n  order to calculate the torque and force on the inner, rotating, cylinder, 
when the outer one is a t  rest, we need to consider the stress rpp directed along 
the outward normal to the inner cylinder in figure I ,  and the stress T , , ~  tangential 
to the cylinder in the anticlockwise sense. Integration over q5 and 6 must be 
performed. Since we have considered the cylinders to be infinitely long, corre- 
sponding to many Taylor-vortex wavelengths in an experiment, we require only 
the mean parts (with respect to 6) of the velocity and pressure fields; the other 
Fourier components integrate out. 

The normal and tangential stresses on a surface p = constant are given by 

where c~ denotes the density and ,LA the viscosity. 
On the inner cylinder, whichisrepresented by p = 1, the directionsof thenormal 

(6.1) and tangential (6.2) stresses are coincident with the radial and azimuthal 
directions in a polar co-ordinate system based on the centre of the inner cylinder. 
Thus the torque and the force components acting on a length 1 of the inner cylin- 
der are given by 

(6 .3)  

3’‘ = la (rpp cos 8 - rpC sin 8),,,,d8, so”n 

where (S, Y )  are Cartesian co-ordinates along and normal to 8 = $ = 0 (figure I) ,  
and the stesses are means with respect to c. 

In order to evaluate the above formulae correctly, we need the relation be- 
tween 8 and q5 since the stresses on the inner cylinder are given in terms of q5; 
this relation is given in I. For the Taylor-vortex correction in the present analysis, 
which is O(e)  for both torque and force, it is sufficient to let 8 = q5. 
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We first consider the Taylor-vortex contributions, which we denote by an 
overbar. The contributions from the basic flow, as given in I, will be added later. 

From the anaIysis of this paper, with q2 = 0 and c = 2 ,  we find 

for the mean Taylor-vortex stresses on the inner cylinder. It is seen that the 
normal stress, which is dominated by the contribution of the 'lubrication' 
pressure field qo(q5), is larger than the tangential stress by a factor S-l. Thus the 
force contributions attributable to the Taylor vortices come dominantly from 
(6.6) and thus from the 'lubrication' effect. Substituting (6.7) in (6.3) and (6.6) 
in (6.4) and (6.5), we find the following expressions for the torque and load on 
the inner cylinder, where we have also included contributions from the basic 
flow: 

- 
6npq1 ( [ e (  1 + &Y+ 0 ( e 3 ) ) ]  - @c(k, Tl) [1 + O ( E ) ] } .  (6.10) 

6 2  n 
FIT = 

In  these formulae 

The contributions from the basic flow, which are given first with the appropriate 
errors, are taken from equations (76)-(78) of I ,  but with (76) multiplied by an 
omitted E and all three formulae subject to expansions valid for small E .  In  the 
above formulae (6.8)-(6.10), relation (3.4) shows that E may be replaced by 
(T- To)/Tl and for later comparisons this is helpful. 

Thus, using (3.4) in this way, we see that formula (6.8) for the torque is pre- 
cisely that of Davey (1962) for the concentric case. However, it  is worth noting 
that the Taylor-vortex contribution to the torque, being O(s)  for Tl fixed, is larger 
than the correction O(e2) to the basic flow due to eccentricity. In  formula (6.9), 
we note especially that the Taylor-vortex contribution to Fx, being O(s) ,  is 
larger in 8 ordering than the contribution of the basic flow due to inertia, which is 
proportional to E R ~ ,  where R,  = (qla/v)  a2 = O ( E ) .  Moreover in (6.10) the Taylor- 
vortex contribution has larger order than the curvature (8)  correction due to the 
basic flow. 
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0.0970 0.4003 

TABLE 2. Fc and Fs for various values of k and T, 

0.5 
& 

0.0002 0.0177 
PC FS 

0.0014 0.0443 
0.0054 0.0884 
0.0215 0.1752 
0.0477 0-2592 
0.0832 0.3388 
0-1268 0.4133 
0-1773 0.4817 
0.2335 0.5437 
0.2940 0.5988 
0.3575 0.6471 
0.4231 0.6887 

2.0 
& 

0.0000 0.0065 
0.0002 0.0163 
0.0006 0.0326 
0.0024 0-0651 
0.0054 0.0975 
0.0096 0.1297 
0.0149 0.1617 
0.0214 0.1933 
0.0290 0.2246 
0.0377 0.2554 
0.0474 0.2858 
0.0582 0.3156 

FC p ,  

In  order to have more knowledge of the force, we need to evaluate the integrals 
(6.1 I ) .  From (4 .24)  and (5.7) we find, for Tl -+ 0, that 

On the other hand, for Tl -+ CO, formulae (4 .24)  and (5 .12 )  yield 

(6 .12 )  

(6.13) 

(6 .14)  

4 ( k ,  Tl) = nkww4/Tlw3wi2+ O ( T T ~ ) .  (6 .15)  

Furthermore, table 2 gives the results of computations of F, and 4 for a set of 
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T - T o  

84.75 
169.5 
254.25 
339.0 
508.5 
847.5 

84.75 
169.5 
254.25 
339.0 
508.5 
847.5 

84.75 
169.5 
254-25 
339.0 
508.5 
847.5 

84.75 
169.5 
254.25 
339.0 
508.5 
847-5 

84.75 
169.5 
254.25 
339.0 
508.5 
847.5 

21, 

848 
1 fig5 
2543 
3390 
5085 
8475 

424 
848 

1271 
lti95 
2543 
4238 

283 
565 
848 

1140 
1695 
2826 

213 
424 
63ti 
848 

127 1 
2119 

170 
339 
509 
678 

1017 
1683 

FYI3 FYTV 

s = 0.01, E = 0.1, k 
0.6030 0.0085 
0.6030 0-0226 
0.6030 0.0328 
0.6030 0.0385 
0.6030 0.0434 
0.6030 0.0456 

E'X B 

= 0.499 

0.0826 
0.0845 
0.0864 
0.0883 
0.0919 
0.0987 

8 = 0.01, 6 = 0.2, k = 0.247 

1.2067 0.0087 0.1543 
1.2067 0.0269 0-1579 
1-2067 0.0457 0.1615 
1.2067 0.0615 0.1649 
1.2067 0.0806 0-1717 
1.2067 0.0907 0.1844 

S = 0.01, E = 0.3, k = 0.163 

1.8147 0~0080 0.2046 
1-8147 0.0258 0-2095 
1.8147 0.0465 0.2142 
1.8147 0.0669 0.2188 
1.8147 0.1007 0.2277 
1.8147 0.1321 0.2446 

S = 0.01, E = 0.4, k = 0.120 

2.4368 0.0074 0.2231 
2.4368 0.0243 0.2284 
2.4368 0.0450 0.2335 
2.4368 0.0665 0.2285 
2.4368 0.1069 0.2483 
2.4368 0.1623 0-2667 

S = 0.01, 6 = 0.5, k = 0.093 

3.0946 0.0069 0.1974 
3.0946 0.0231 0.2021 
3.0946 0.0431 0.2066 
3.0946 0.0648 0.2111 
3.0946 0.1078 0.2197 
3.0946 0-1781 0.2360 

TABLE 3. Continued on next page. 

- F'YTt 

0.01 ti2 
0.02 14 
0.0200 
0.0170 
0.0122 
0-0074 

0.02 12 
0.0336 
04377 
0.0366 
0.0283 
0.0 1 6 1 

0-0229 
0.0390 
0.0481 
0.0516 
0.0479 
0.0284 

0-0238 
0-0420 
0.0542 
0.0814 
0.0645 
0.0466 

0.0243 
0.0439 
0.0583 
0.0681 
0.0770 
0.0666 

(PS +PTV)rnC+. 

( P B ) m a r  

1.058 
1.096 
1.102 
1.102 
1.101 
1.098 

1.038 
1.079 
1.096 
1.097 
1.096 
1.094 

1.026 
1.057 
1.082 
1.089 
1.089 
1.088 

1.019 
1-041 
1.063 
1.078 
1.081 
1.079 

1.014 
1.030 
1.046 
1.060 
1.070 
1.069 

values of k and TI. This forms a representative selection of results obt'ained by 
Dr P. A. McGloin and available from the auhhors. For a given geometry, k is given 
by ( 2 . 2 )  while for a given supercritical Taylor number !PI is given by (3.4) wit.h the 
t,erni O(e2)  ignored. Thus formulae (6.9) and (6.10), together with table 2 and 
any necessary extensions and interpolations, can be used to calculate the com- 
ponents of the force. In  some circunistances formulae (6.12)-(6.15) may be useful. 

Some typical values for the force components F, and FI- are given in table 3 
for two values of 8, five values of e and with the Taylor number at a level 5,10,15, 
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T-To 

84.76 
169.5 
254.25 
339.0 
508.5 
847.5 

84.75 
169.5 
254.25 
339.0 
508.5 
847.5 

84-75 
169.5 
254.25 
339.0 
508.5 
847.5 

84.75 
169.5 
254.25 
339.0 
508.5 
847.5 

84.75 
169.5 
254.25 
339.0 
508.5 
847.5 

TI 

848 
1695 
2543 
3390 

8475 
5085 

424 
848 

1271 
1695 
2543 
4238 

283 
565 
848 

1130 
1695 
2825 

212 
424 
636 
848 

1271 
2119 

170 
339 
509 
678 

1017 
1695 

F Y B  FYTV FX B 

8 = 0.1, 6 = 0.1, k = 1.577 

0.6300 0.0017 0.2610 
0.6300 0.0061 0.2672 
0.6300 0.0119 0.2732 
0.6300 0.0177 0.2791 
0.6300 0.0272 0.2904 
0.6300 0.0374 0.3120 

8 = 0.1, E = 0.2, k = 0-782 

1.2608 0-0028 0.4876 
1.2608 0.0102 0.4991 
1.2808 0.0203 0.5103 
1.2608 0.0311 0.5213 
1-2608 0.0503 0.5426 
1.2608 0.0728 0.5828 

8 = 0.1, F = 0.3, k = 0.514 

1.8959 0-0032 0-6465 
1.8959 0-0121 0.6617 
1.8959 0.0247 0.6766 
1.8959 0.0389 0.6911 
1-8959 0.0666 0-7193 
1-8959 0.1040 0.7727 

= 0 . 1 , ~  = 0-4, k = 0.378 

2.5459 0.0034 0.7043 
2.5459 0.0127 0.7209 
2.5459 0.0264 0.7371 
2.5459 0.0424 0.7529 
2.5459 0.0760 0.7837 
2.5459 0.1288 0.8418 

6 = 0.1, E = 0.5, k = 0.293 

3.2332 0.0034 0-6224 
3.2332 0.0128 0-637 1 
3.2332 0.0268 0-6514 
3.2332 0.0437 0.6654 
3.2332 0.0805 0.6926 
3.2332 0.1461 0.7440 

- F X T V  

0.0086 
0.0156 
0.0201 
0.0225 
0.0230 
0.0188 

0.0 150 
0.0277 
0.0368 
0.0421 
0.0449 
0.0381 

0.0189 
0.0355 
0-0484 
0.0572 
0.0644 
0.0579 

0.0212 
0.0402 
0.0558 
0.0675 
0.0800 
0.0777 

0.0225 
0.043 1 
0.0606 
0.0744 
0.0917 
0.0961 

1.018 
1.042 
1-066 
1.085 
1.107 
1.120 

1.016 
1.039 
1.063 
1-083 
1.104 
1.113 

1.013 
1.033 
1-055 
1.073 
1.094 
1.102 

1.010 
1.026 
1.044 
1.060 
1.080 
1.088 

1.008 
1.020 
1-033 
1.046 
1.064 
1-072 

TABLE 3. Loads for S = 0.01 and S = 0.1 and various values of k and T ,  
(6 and (T  - T o ) )  

20,30 or 50% above the critical value. For this purpose (6.9) and (6.10) are 
rewrittsn in the form 

& = -TpqIz6-2(FSB+FSTr’), (6.16) 

PI- = - npql E 6-2 (PI. B + FE’ Tr’). (6.17) 

The definitions of the Taylor-vortex contributions FxTV and FIT TV follow from 
comparison of (6.16) and (6.17) with (6.19)-(6.11). On the other hand, the values 
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of the basic-flow contributions FXB and FYB were not calculated from the forms 
(6.9) and (6.10) expanded in e but from the full formulae (77) and (76) of I ,  with 
an omitted E factor restored to the numerator of (76). It can be seen that, in the 
range of parameters given, FYTV may be up to 8 % of FyB. In  contrast FyTv may 
be as large as 25 yo of Fxs, mainly because FxB arises from an inertial laminar 
flow effect and is therefore proportional to R,, and thus is smaller than FTB. 

It should be remembered also that the present work is based upon the use of 
small parameters 6, R, ( -  (T6)t) and E .  It can be seen that some of the data of 
table 3 are on the borderline of violating those assumptions, especially for 6 = 0.1, 
even if they have not actually violated them. The data for 6 = 0.01 and for the 
smaller values of E are more acceptable, since FxB is small compared with FYB, 

and the Taylor-vortex contributions are relatively small. It is interesting to 
note that, for the numerical calculations, 1 FxTVI < I FXBI, whereas the asymptotic 
form of (6.9) shows that FxTv will dominate as E + 0. Clearly, even e = 0-1 is 
not small enough to  counteract the effect ofthe numerical coefficients that appear 
in the formulae for FxB and FXTV. We note also that both Fx, and FXTv, as well 
as F;Tv, are perturbations away from the main force component, FYB. 

Unfortunately we have not been able to find in the literature any experimental 
data with which to compare the computational results of table 3. However, 
Vohr (1967) has made measurements of the pressure distribution for 6 = 0.0104 
and for E = 0*20,0*35, 0.51 and 0.68, both for laminar flow and for Taylor-vortex 
flow. In  one set of experiments the pressure dependence on angular position 
was measured and is shown in figures 19 and 20 of Vohr (1967). For the laminar 
case good agreement was found with the Sommerfeld pressure distribution 
(6 --f 0, R, -+ 0, paper I), when an experimental technique t o  eliminate the 
inertial (R,) effect was used. I n  the case of flow with Taylor vortices, the pressure 
distributions were found to  be of similar shape to that of Sommerfeld, but of 
greater magnitude. The Taylor numbers are much too high for our theory, but we 
comment that, with 

P’ = (vqi/aS2) (PB + P T ~ ) ,  (6.18) 

we obtain values of pTV comparable with experiment, or an order of magnitude 
lower. 

In  figure 24 of his paper, Vohr (1967) plots (pn + P T V ) m a x / ( l ) B ) m a x .  Values of 
this quantity are shown in table 3 (with R, + 0 in the basic flow). For Vohr’s 
cases of S = 0.0104, E = 0-20, 0-35 and 0-51 and with R, = 0 in the basic flow, 
curves are shown in figure 3 of this quantity plotted against R, = q1a8/v. 
The levelling off as R, increases represents the fact of this theory becoming invalid 
beyond R, !x 430. Vohr’s experiments show values comparable with those of 
figure 3 but a t  higher values of R,. The fact that our critical Taylor number is 
To, independent of e to the present order of accuracy, may have some effect on 
the comparisons. 

In  addition, Vohr (1968) has made observations of the torque as a function of 
speed, with 6 either 0.01 or 0.1 approximately and for several values of e. The 
most noticeable feature is that the angle of bifurcation, between the torque 
curves for laminar and Taylor-vortex flows a t  the critical point for instability, 
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400 410 420 430 440 450 460 470 480 

R8 

FIUURE 3. The variation of ( p ~ + p ~ v ) , , / ( p ~ ) , ~  with R8 for 
E = 0.2. 0.35 and 0.51 and 6 = 0.0104. 

decreases as the eccentricity increases. Our torque formula, correct up to terms 
O(E) ,  is identical with that for the concentric case, and as a consequence cannot 
explain this. 

7. Discussion 
It is desirable to assess the three objectives of this paper, as stated in the 

introduction. 
(i) A mathematical perturbation procedure has been devised in which the 

eccentricity tends to zero subject to two parameters k and T, being held fixed; 
the parameter k relates the clearance ratio and eccentricity, while TI determines 
the value of the supercritical Taylor number. For T, -+ 0, as a second limit, the 
bifurcation point of linear theory is approached, but the arbitrary amplitude of I1 
is now known; for Tl -+ co the concentric nonlinear flow field is obtained. 

(ii) It has been shown that the azimuthal position of maximum vortex activity 
varies with the value of T,, being a t  a downstream location of 90" from the point 
of widest gap when Tl -+ 0 but at  the point of widest gap when T, -+ 00. For 
Vohr's (1968) experiments with 6 = 0.099 and E = 0,475, and a t  a speed 10% 
above critical, the position of maximum vortex activity is a t  an angle of about 
50". For our calculations we have lc = 0.31 and T - To = 0*2T0, which implies 
that TI = 700, and we find a similar angle, although the values of eccentricity and 
clearance ratio are probably too large for the theory to be valid. 

(iii) The torque and load formulae have been calculated to order 6 ,  equivalent 
to an order of (velocity amplitude)2 for the Taylor-vortex contributions. Of 
especial note is that the torque does not depend upon eccentricity at  this order 
and is simply Davey's (1962) result. It is necessary to go to order c2 at least in 
order to remedy this feature, and to be able therefore to compare the results 
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with Vohr’s (1968) measurements of torque and its dependence on eccentricity. 
Unfortunately we have been unable to find any measurements of the dependence 
of load on the presence of Taylor vortices, but a limited, and somewhat unsatis- 
factory, comparison has been made with Vohr’s (1967) measurements of pressure 
distributions. Of interest is our result (see (6.8)-(6.15) and table 3) that, for a 
range of TI upwards from zero, the main part of the Taylor-vortex load on the 
inner cylinder is in a direction along the line of centres, and therefore at  right 
angles to the ‘Reynolds’ load. As the value of Tl increases, the Taylor-vortex 
load vector swings towards the normal (Reynolds) direction, but naturally the 
analysis shows that the load disappears in the concentric limit (T’ -+ 00). 

We conclude this paper by calling attention to an error and several minor mis- 
prints in an earlier paper, J .  Pluid Meeh. vol. 54, 1972, p. 393. 

(i) p. 405. The term - (3D2-h2 - +c) D2f, in (5.31) should be 

- (GO2 - 3h2 - $c) DY0. 

As a consequence [p. 407, equation (6.3)] T2, should be 1904, and (p. 408) the 
factor 1 + 1 . 1 2 5 ~ ~  in (6.14) should be 1 + 2 . 6 2 4 ~ ~ .  The upshot of these changes is 
that the curves in figures 2 , 3  and 4 are shifted upwards, agreeing better generally 
with the experiments. The authors very much regret this serious error. Correc- 
tions of less serious ‘slips of the pen’ follow. 

(ii) p. 397. In  (2.15) delete Sin SaYol. 
(iii) p. 398. In  (3.8) in the expression for P replace c by q5 and v by v 2  in the 

coeficient of p’. 
2a2s a 

c a@ (iv) p. 399. In  (3.12)) multiply the term - - (p-V*)u, by U .  

(v) p. 399. In (3.151, replace 1 +ax byp. 
(vi) p. 402. In  (4.16)) replace 1 - *Gc2 by 1 -&c2. 
(vii) p. 404. In  (5.25), multiply h2 Togl by V,. 
(viii) p. 405. In  (5.38) replace (6x/x)f1 by (6x/c)f1. 
(ix) p. 412. In  line 12 up replace k = 0.33 by k = 0.31. 
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